
Legion-based	Scien/fic	Data	Analy/cs	on	
Heterogeneous	Processors	

Lina Yu, Hongfeng Yu
Department of Computer Science & Engineering

University of Nebraska Lincoln, Lincoln, Nebraska

1	

Outline	

•  Motivation	
•  Contributions	
•  Framework	
•  Examples		
•  Experiments	and	Results	
•  Conclusion	

2	

Mo/va/on		

•  It	is	challenging	to	ef>iciently	use	today’s	supercomputers	
–  Deep,	distributed	memory	hierarchies		
–  Heterogeneous	processing	units	

•  Communication	costs	are	a	critical	issue	for	parallel	system	and	
software	designers	to	consider	
–  A	scienti>ic	analytics	work>low	consists	of	multiple	operations	that	

intrinsically	incur	different	communication	or	data	movement	
requirements	between	compute	nodes	

3	

•  Legion	:	programming	model	+	runtime	system	
–  Describe	hierarchical	organizations	of	both	data	and	computation	at	an	

abstract	level	

•  Legion	assists	a	programmer	in	solving	the	common	programming	
burdens	
–  Discover/verify	the	correctness	of	parallel	execution	
–  Manage	communication	

•  At	a	high	level,	mapping	a	Legion	program	needs	making	two	kinds	
of	decisions	
–  For	each	task,	select	a	processor	on	which	to	run	the	task	by	the	mapping	

interface	
–  	For	each	logical	region,	a	task	needs	to	select	a	memory	in	which	to	create	

and	use	a	physical	instance	of	the	logical	region	

Mo/va/on		

4	

Our	Contribu/on	

•  Investigate	the	feasibility	of	using	Legion	to	perform	analytics	for	
large-scale	scienti>ic	data	on	heterogeneous	processors	

•  Help	users	simplify	programming	on	the	data	partition,	data	
organization,	and	data	movement	for	distributed-memory	
heterogeneous	architectures	

•  Facilitate	a	simultaneous	execution	of	multiple	analytics	
operations	on	modern	and	future	supercomputers	

•  Demonstrate	the	scalability	and	the	usability	of	our	approach	
using	several	representative	analytics	operations	on	a	
heterogeneous	supercomputer	

5	

Mapper	Interface	

•  We	design	a	custom	mapper	based	on	Legion’s	mapper	interface	
–  Map	operations	onto	target	processors	
–  Specify	which	memories	are	used	to	host	the	physical	instances	of	the	

logical	regions	requested	by	such	operations	

6	

OP= {op1,...,opv }

mapper interface
GPU = { gpu1,...,gpun }

CPU = { cpu1,...,cpum }
<opi, CPUsi, GPUsi>

<op1, CPUs1, GPUs1>

<opv, CPUsv, GPUsv>

…	…	

…	…	

Region	Construc/on	and	Task	Scheduling	

•  Main	steps	of	the	process	of	our	approach	
–  Make	an	operation	opi	processed	on	heterogeneous	processors	

7	

logical region physical region

logical partition ={lp1,…,lpp}

CPUsi
task scheduler

Opi (logical partition)

… …

… …

index space

field space

GPUsi
… …

… …

(GPUsi)1 Opgi(lp1)

(GPUsi)k Opgi(lpk)

(GPUsi)u Opgi(lpu)

(CPUsi)1 Opci(lpu

+1)

(CPUsi)j Opci(lpu+j)

(CPUsi)v Opci(lpp)

Construct a field space of the logical region, and allocate
the field space for each portion of data.

Construct an index space of the logical region for the input
data of each operation.

Create a logical region using the index space and the field
space defined in the previous two steps.

Execute operations on GPUs and CPUs according to the
previous mapper interface we designed.

Use coloring to partition a logical region (colorings are
objects that describe an intended partition of an index
space).

Create a corresponding physical region to hold the
physical instances (i.e., the real values for the input data).

1

2

1

2
3

5

6

4

3

4

5

6

8	

Continued	List	1	

9	

10	

ray_casting image_compositing

mapper	interface	
GPU = { gpu1,...,gpun }

CPU = { cpu1,...,cpum }
CPUs1

GPUs1 ray_casting

entropy

entropy

CPUs2 image_compositing

ray_casting image_compositing

mapper	interface	

GPUs1 ray_casting

CPUs2 entropy

entropy

CPUs3 image_compositing

CPUs1 ray_casting

GPU = { gpu1,...,gpun }

CPU = { cpu1,...,cpum }

•  Sort-last	parallel	volume	rendering	with	entropy	analysis	
–  Mapper	interface	

Examples	

Examples	
•  Sort-last	parallel	volume	rendering	with	entropy	analysis	

–  Region	construction	and	task	scheduling	

11	

…	

entropyCPU	

ray_castingCPU	

image_compositingCPU	 image_compositingCPU	

Index Field

{vol_index_space} {vol_field_space}

3D	volume	logical	region	

TaskID Type

RAY_CASTING_TASK1 GPUs

RAY_CASTING_TASK2 CPUs

ENTROPY_TASK CPUs

IMAGE_COMPOSITING_TASK CPUs

Mapper	

Tasks	3D	volume	physical	region	 3D	volume	logical	par//on	

entropyCPU	

ray_castingGPU	

Voxel Index Value

… …
LogicalPartitonID Start Offset

… … …

Index Field

{img_index_space} {img_field_space}

2D	image	logical	region	

2D	image	physical	region	 2D	image	logical	par//on	
Pixel Index Value

… …

LogicalPartitonID Start Offset

… … …

LogicalPartitonID TaskID

… …

…	

GPU

…	

denotes	CPU	cores		

GPU

GPU

Examples	
•  Sort->irst	parallel	volume	rendering	with	entropy	analysis	

–  Mapper	interface	
•  Ray	casting	task(GPUs)	
•  Entropy	task(CPUs)	

–  Region	construction	and	task	scheduling	
•  Divide	the	2D	image	into	uniform	2D	grids		
•  Each	processor	is	responsible	for	the	rendering	of	an	image	portion	
•  No	need	to	divide	the	3D	volume	data	
•  No	need	image	compositing	

•  The	sort->irst	and	sort-last	algorithms	have	differences	on	data	
partitioning	and	distribution	requirements,	but	our	solution	
provides	a	simple	and	feasible	way	to	incorporate	different	
operations	in	a	uni>ied	framework	using	logical	regions	

12	

Experiments	and	Results	
•  Conduct	experiments	on	Titan,	a	Cray	XK7	supercomputer	located	
at	the	Oak	Ridge	Leadership	Computing	Facility	
–  	Each	node	of	Titan	contains	one	16-core	AMD	Opteron	CPU	and	a	NVIDIA	

Tesla	K20	GPU	

•  Test	sort->irst	and	sort-last	parallel	rendering	
•  Conduct	scalability	comparisons	using	a	combustion	dataset	with	
the	resolution	of	1600x1375x430	

•  Test	between	1	to	256	processors	with	two	output	image	
resolutions	of	10242	and	20482		

13	

Experiments	and	Results	
•  The	overview	time	breakdown,	data	partition	time,	rendering	
time,	and	data	movement	time	on	a	different	total	number	of	
nodes	for	sort->irst	rendering	and	sort-last	rendering	

(a)	 (b)	

(c)	 (d)	

(a)	 (b)	

(c)	 (d)	

14	

Fig.	1:	(a):	the	/me	breakdown	of	sort-first	parallel	volume	rendering	for	
different	number	of	nodes.	(b):	the	data	par//on	/me.	(c):	the	rendering	
/me.	(d):	the	data	movement	/me.	Two	output	image	resolu/ons,	10242	
and	20482,	are	used.	

Fig.	2:	(a):	the	/me	breakdown	of	sort-last	parallel	volume	rendering	for	
different	number	of	nodes.	(b):	the	data	par//on	/me.	(c):	the	rendering	
/me.	(d):	the	image	composi/ng	/me.	Two	output	image	resolu/ons,	10242	
and	20482,	are	used.	

•  Interactive	rendering	time	and	data	movement	time	of	sort->irst	
parallel	rendering	for	64	nodes	with	image	resolution	of	10242	

Experiments	and	Results	

Fig.	3:	The	rendering	/me	and	data	movement	/me	of	sort-first	rendering	for	
64	nodes	from	mul/ple	view	angles.	The	output	image	resolu/on	is	10242.	

15	

Experiments	and	Results	

•  The	rendering	time	results	of	sort->irst	and	sort-last	parallel	
rendering	on	any	number	of	nodes	from	1	to	256	with	image	
resolution	of	10242	

Fig.	4:	The	/me	results	of	sort-first	(a)	and	sort-last	(b)	parallel	rendering	on	any	number	of	nodes	from	1	to	256.	The	output	
image	resolu/on	is	10242.	

(a)	 (b)	

16	

Experiments	and	Results	

Fig.	5:	The	/me	results	of	ray	cas/ng	and	entropy	analysis	with	various	ra/os	on	alloca/on.	The	output	image	resolu/on	is	
10242.	

•  Legion	job	stealing	scheduling	performance	
–  CPU	ray	casting	time	is	1.347	seconds(5%)	
–  CPU	entropy	time	is	0.936	second	
–  GPU	ray	casting	time	is	2.833	seconds	(95%)	

•  Given	that	each	node	has	a	16-core	CPU,	we	tested	different	ratios	
between	ray	casting	and	entropy	operations	

17	

Conclusion	

•  A	study	for	conducting	scienti>ic	data	analytics	on	distributed	
heterogeneous	architectures	by	leveraging	the	Legion	
programming	model	and	runtime	system	

•  Consider	both	scalability	and	usability	in	our	design	

•  Facilitate	complex	analytics	operations	with	completely	different	
data	partitioning	and	distribution	requirements	in	a	nearly	
uni>ied	manner	

•  Perform	operations	across	CPUs	and	GPUs	and	balance	workload	
by	automatic	or	manual	scheduling	strategies	

18	

Acknowledgement	

•  This	research	has	been	sponsored	in	part	by	the	Department	of	
Energy	through	the	ExaCT	Center	for	Exascale	Simulation	of	
Combustion	in	Turbulence	the	National	Science	Foundation	through	
grant	IIS-1423487.	

•  The	allocation	of	supercomputing	time	on	the	Oak	Ridge	Leadership	
Computing	Facility	(OLCF)	has	been	sponsored	by	the	Department	
of	Energy	through	the	Innovative	and	Novel	Computational	Impact	
on	Theory	and	Experiment	(INCITE)	program		

19	

Thank	You!	

20	

