

Juan Lin^{1,3}, Di Zhong², Yiwen Zhong³, Hui Zhang¹,

¹ University of Louisville, Louisville, KY, USA

² Indiana University, Bloomington, IN, USA

³ Fujian Agricultural and Forestry University, Fujian, China

December 12, 2016

Content

Introduction

A New Visualization Paradigm for Exploring Mathematical Knots

Acceleration Geometric Deformations of Complexity

MathSimWeb-Putting Computation and Visualization Together

Conclusion

I Introduction

Figure 1. The three Reidemeister moves.

(I) Twist or untwist in either direction.(II) Move one loop completely over another.(III) Move a string completely over or under a crossing.

I Introduction

✓ Self-deformable model

Figure 2. Typical screen images of the self-deformation.

I Introduction

Figure 3. Prototype of MathSimWeb.

II A New Visualization Paradigm for Exploring Mathematical Knots

Force-directed Algorithm

→ Force Laws for Automatic Topological Refinement

 Attractive Mechanical Force
 F_m=Hr^{1+β}
 r is the distance between masses
 H is a constant

• Repulsive electrical force: $F_{e}=Kr^{-(2+\alpha)}$

r is the distance between masses

K is a constant

II A New Visualization Paradigm for Exploring Mathematical Knots

✓ Collision Avoidance for Topology Preservation

• Point-segment collision

• Segment-segment collision

II A New Visualization Paradigm for Exploring Mathematical Knots

Adding Masses to Constrain Deformation in Configuration

II A New Visualization Paradigm for Exploring Mathematical Knots

Adding Overriding Forces to Supplement Unguided Refinement

Figure 5. Untying an overhand knot with user-defined overriding forces in conjunction with the self-deformation.

III Accelerating Geometric Deformations Of Complexity

✓ Extracting Key Moments for Mathematical Movies

→Through Identifying the minima number of crossing points among all possible 2D projections

IV MathSimWeb — Putting Computation and Visualization Together

```
library(Matrix);
n <- 8192;
X <- Hilbert(n);
A <- nearPD(X);
system.time(B <- chol(A$mat));
# user system elapsed
# 97.990 0.356 98.591
library(HiPLARM)
system.time(B <- chol(A$mat));
# user system elapsed
# 1.012 0.316 1.337
```

Figure 3: A brief example to highlight the benefits of using HiPLARM.

IV MathSimWeb — Putting Computation and Visualization Together

V Conclusion

Figure 3. MathSimWeb.

