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BIG DATA COMPUTATIONAL LANDSCAPE

� Volume and Variety of Data increasing at a rapid pace

� Analysis Workloads also increase in complexity 

� Place increasing demands on Computing Infrastructure

� For maximum performance, vendors respond specialized hardware
� GPUs, Accelerators (Intel Xeon Phi)

� Intel Knights Landing many-core
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BIG DATA APPLICATION WORKLOADS

� Stress the hardware in different ways
� IO Bound

� Computationally Intensive

� Storage 

� Network Intensive
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� Computing Infrastructure (HPC)
� CPU Architectures

� Caching layers and algorithms

� Memory Technologies

� Storage Technologies

� Network Interconnects

Problem:  Best Infrastructure for given Workload ?



RELATED RESEARCH AREAS

� Workload Characterization
� Gaining a granular low level picture of the Application being examined

� Low level execution traces (Intel PIN tool), Hardware performance counters

� Usually done with one objective in mind
� Energy optimization
� CPU/Resource utlization

� Performance Benchmarking
� Use an application representative of a class of workloads and compare systems
� Industry standard benchmarks

� SPEC benchmarks
� HiBench, SparkBench
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MOTIVATIONS & GOALS

� Workload Characterization 
� We’re not trying to optimize the inner workings of an application for an objective

� Performance Benchmarking
� Translating benchmark numbers to real application performance is somewhat vague

� Performance bottlenecks vary with datasets
� IO latency becomes apparent when input dataset is large

� Our Goal
� Predict relative performance for an application across different available hardware
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COMPUTING INFRASTRUCTURE

� Two architectures styles that will be prevalent
� Multi core

� A few really fast cores 

� Intel Xeon processors

� Stampede

� Many core
� Several (at-least an order higher in number) of moderately slow cores

� Intel Knights Landing processors (KNL)
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STAMPEDE

� Each Node
� 2x Intel Xeon E5 Sandy Bridge 

processors
� 16x 2.4GHz  Hardware Threads in 

total
� 32G Memory

� Mellanox FDR Infiniband technology
� 2 Level (cores and leafs) topology
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KNL

� Each Node
� 1x Intel Xeon Phi 7250 (Knights Landing)

� 272x 1.4GHz Hardware Threads in total

� 96GB Memory
� 16GB is fast MCDRAM technology

� Omnipath 100Gb/s network



OUR METHOD

� Supply and Demand model of application demand

� 𝐹 𝑑𝑒𝑚𝑎𝑛𝑑, 𝑠𝑢𝑝𝑝𝑙𝑦 = 	  /
𝑙𝑜𝑤	  𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝑠𝑢𝑝𝑝𝑙𝑦 > 𝑑𝑒𝑚𝑎𝑛𝑑	  
𝑜𝑝𝑡𝑖𝑚𝑎𝑙	  𝑢𝑡𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛	  	  	  	  	  	  𝑠𝑢𝑝𝑝𝑙𝑦 = 𝑑𝑒𝑚𝑎𝑛𝑑
	  𝑙𝑜𝑤	  𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝑠𝑢𝑝𝑝𝑙𝑦 < 𝑑𝑒𝑚𝑎𝑛𝑑
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OUR METHOD

� Each subsystem

� 𝑡𝑖𝑚e(demand,	  supply)	  =E𝑚𝑖𝑛𝑖𝑚𝑢𝑚	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝑠𝑢𝑝𝑝𝑙𝑦 ≥ 𝑑𝑒𝑚𝑎𝑛𝑑
𝑔 𝑑𝑒𝑚𝑎𝑛𝑑	  , 𝑠𝑢𝑝𝑝𝑙𝑦 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝑠𝑢𝑝𝑝𝑙𝑦 < 𝑑𝑒𝑚𝑎𝑛𝑑

� Total time (sum of all subsystems) 
� 𝑇𝑜𝑡𝑎𝑙 =	  ∑𝑡𝑖𝑚𝑒(𝑑𝑒𝑚𝑎𝑛𝑑, 𝑠𝑢𝑝𝑝𝑙𝑦)�

� = ∑𝑡𝑖𝑚𝑒(𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛	  𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒	  𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)�
�
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OUR METHOD

� Using Support Vector Machines on Historical run Data
� With Appropriate Features  carefully selected

� Hardware Characteristics

� Parameters of the Application drawn from its Domain Knowledge

� With enough historical data, achieves high accuracy

� Infrastructure Provider : Improved Resource Utilization

� End Users : Quicker (Analysis + Experimentation) cycles and lesser application tuning
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APPLICATIONS (1)

� VISTA 
� Transportation Simulation Framework (C++)

� Dynamic Traffic Assignment (DTA)
� Models Interactions between

� Traveller ß à Traveller

� Traveller ß à Transport Infrastructure

� Shortest Path computation (Time dependent)
� Main computational component
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ROAD NETWORKS
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DTA WORKFLOW
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� Iterative

� Graph Based

� Like Big Data problems
� PageRank

� Queries on GraphDBs

� Network Community 
Detection

� Critical importance societally



APPLICATIONS (2)
� LAMMPS

� Molecular Dynamics framework (C/C++)

� Simulates interactions between particles in a closed space
� Initial conditions

� Velocity
� Force fields

� Other parameters
� Box dimensions
� Number of particles
� Time simulated
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LAMMPS WORKFLOW
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Given	  atoms	  initial	  positions	  (r(t=0))	  and	  velocities	  (v(t=0)),	  choose	  short	  Dt
Calculate	  forces	  (f(t=0),	  a(t=0))

r(t+Dt)=r(t)+v(t)Dt+(1/2)a(t)Dt2	  

v(t+Dt)=v(t)+(1/2)(a(t)+a(t+Dt)) Dt

Update	  forces	  (f(t+Dt),	  a(t+Dt))

Move	  time	  forward:	  t=t+Dt

Repeat	  as	  long	  as	  you	  need

� Iterative

� System evolves based on 
Newtons Second Law

� Initial conditions can be set
� Number of particles/ 

atoms/molecules

� Forces

� Simulation Time



SVM

� Support Vector Machines

� Supervised Learning : Learns from labelled data

� Widely used classification technique in Machine Learning

� Finds the maximum margin hyperplane separating 2 groups of points

� We use R’s implementation from library(e1071)
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SVM

� Different Kernels employed to measure similarity between 2 samples

� We empirically explore 
� Linear

� Polynomial

� Radial basis

� Sigmoid

12/12/16 17



FEATURE SELECTION :  DTA
� We select the following (7) problem 

features to the SVM model

� Hardware : Processing Power 
� (Total Number of Hardware Threads  

across all nodes) X (Speed of one 
core)

� Hardware : Memory 
� (Total memory across all nodes)
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� Problem Size : Graph Topology
� Nodes
� Links

� Problem Size : Computation Size
� Number of Unique Origin-Destination 

pairs

� Problem Size : Simulation Dynamics
� Number of Vehicles in simulation

� Problem Size :  Simulation Dynamics
� Number of Trips in simulation



DTA SCALING
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� Shown here is for illustration 
Scaling with the  Vehicles 
feature

� Tested across 8 real world 
transportation networks
� (*Included in the paper*)

� Neither system uniformly better 
for all data sets
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DTA : SVM PREDICTION RESULTS
SVM Kernel 70% (Training) – 30% (Testing) 80% (Training) – 20% (Testing)

Linear 93.56 93.01
Polynomial 95.19 92.74
Radial Basis 95.49 96.17

Sigmoid 94.90 95.39
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� Labelled dataset 21 points
� 5 labelled for KNL
� 16 labelled for Stampede
� 1000 fold cross-validation



LAMMPS FEATURES
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� We select the following (4) problem 
features to the SVM model

� Hardware : Processing Power 
� (Total Number of Hardware Threads  

across all nodes) X (Speed of one 
core)

� Hardware : Memory 
� (Total memory across all nodes)

� Problem Size : Box Size

� Problem Size : Time Simulated



LAMMPS SCALING
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LAMPS : SVM PREDICTION RESULTS
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SVM Kernel 70% (Training) – 30% (Testing) 80% (Training) – 20% (Testing)
Linear 71.01 73.975

Polynomial 71.68 78.95
Radial Basis 76.35 80.525

Sigmoid 73.25 77.6

� Labelled dataset 24 points
� 15 labelled for KNL
� 9 labelled for Stampede
� 1000 fold cross-validation



CONCLUSION

� Two very different application workloads
� VISTA (Transportation Simulation, Graph Processing)

� LAMMPS (Molecular Dynamics Simulation)

� Observed accuracy is promising
� Datasets presented are small (20-30 samples in labelled data)

� Model would be more accurate with larger historical data

� Can optimize both System Utilization and End User Analysis time
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FUTURE WORKS

� Test methodology on larger datasets

� Test methodology across different application/workload types
� Hadoop/Spark based workloads

� Include more hardware features to do better prediction
� Network Bandwidth

� L2/L3 caches

� Memory Bandwidth

� Use this within an application specific portal
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