

A WORKLOAD AWARE MODEL OF COMPUTATIONAL RESOURCE SELECTION FOR BIG DATA APPLICATIONS

Amit Gupta, Weijia Xu {agupta , xwj}@tacc.utexas.edu Natalia Ruiz-Juri, Kenneth Perrine nruizjuri@mail.utexas.edu, kperrine@utexas.edu

Texas Advanced Computing Center

Center for Transportation Research

University of Texas at Austin

BIG DATA COMPUTATIONAL LANDSCAPE

- Volume and Variety of Data increasing at a rapid pace
- Analysis Workloads also increase in complexity
- Place increasing demands on Computing Infrastructure
- For maximum performance, vendors respond specialized hardware
 - ► GPUs, Accelerators (Intel Xeon Phi)
 - Intel Knights Landing many-core

BIG DATA APPLICATION WORKLOADS

- Stress the hardware in different ways
 - ► IO Bound
 - Computationally Intensive
 - ► Storage
 - Network Intensive

- Computing Infrastructure (HPC)
 - CPU Architectures
 - Caching layers and algorithms
 - Memory Technologies
 - Storage Technologies
 - Network Interconnects

Problem: Best Infrastructure for given Workload ?

RELATED RESEARCH AREAS

Workload Characterization

- Gaining a granular low level picture of the Application being examined
 - Low level execution traces (Intel PIN tool), Hardware performance counters
- Usually done with one objective in mind
 - Energy optimization
 - ► CPU/Resource utlization
- Performance Benchmarking
 - Use an application representative of a class of workloads and compare systems
 - Industry standard benchmarks
 - SPEC benchmarks
 - ► HiBench, SparkBench

MOTIVATIONS & GOALS

- Workload Characterization
 - We're not trying to optimize the inner workings of an application for an objective
- Performance Benchmarking
 - Translating benchmark numbers to real application performance is somewhat vague
- Performance bottlenecks vary with datasets
 - IO latency becomes apparent when input dataset is large
- Our Goal
 - Predict relative performance for an application across different available hardware

COMPUTING INFRASTRUCTURE

Two architectures styles that will be prevalent

- Multi core
 - A few really fast cores
 - Intel Xeon processors
 - Stampede
- Many core
 - Several (at-least an order higher in number) of moderately slow cores
 - Intel Knights Landing processors (KNL)

STAMPEDE

► Each Node

- 2x Intel Xeon E5 Sandy Bridge processors
- 16x 2.4GHz Hardware Threads in total
- ► 32G Memory
- Mellanox FDR Infiniband technology
 - ► 2 Level (cores and leafs) topology

Each Node

- 1x Intel Xeon Phi 7250 (Knights Landing)
- 272x 1.4GHz Hardware Threads in total
- 96GB Memory
 - ► 16GB is fast MCDRAM technology
- Omnipath 100Gb/s network

KNL

OUR METHOD

Supply and Demand model of application demand

low utilization optimal utlization low efficiency

supply > demand
supply = demand
supply < demand</pre>

OUR METHOD

Each subsystem

► time(demand, supply) = $\begin{cases} minimum \\ g(demand, supply) \end{cases}$

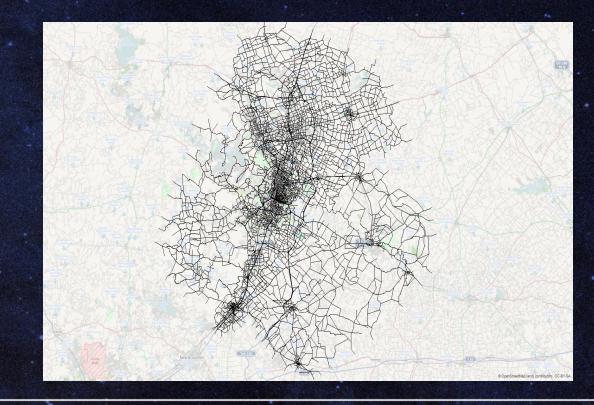
 $supply \ge demand$ supply < demand

- Total time (sum of all subsystems)
 - $Total = \sum time(demand, supply) = \sum time(application parameters, hardware parameters)$

OUR METHOD

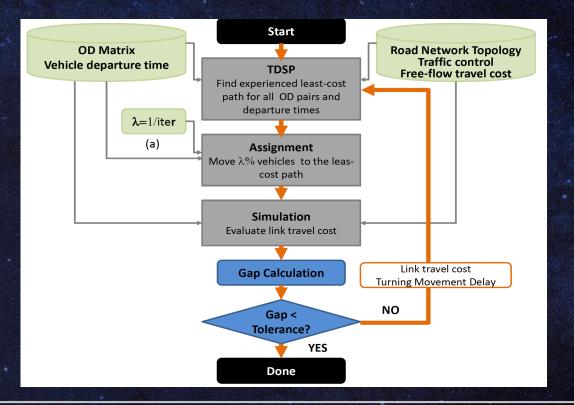
Using Support Vector Machines on Historical run Data

- With Appropriate Features carefully selected
 - Hardware Characteristics
 - Parameters of the Application drawn from its Domain Knowledge
- With enough historical data, achieves high accuracy
- Infrastructure Provider : Improved Resource Utilization
- End Users : Quicker (Analysis + Experimentation) cycles and lesser application tuning


APPLICATIONS (1)

► VISTA

- Transportation Simulation Framework (C++)
- Dynamic Traffic Assignment (DTA)
 - Models Interactions between
 - ► Traveller \leftarrow → Traveller
 - Traveller \leftarrow \rightarrow Transport Infrastructure
 - Shortest Path computation (Time dependent)
 - Main computational component

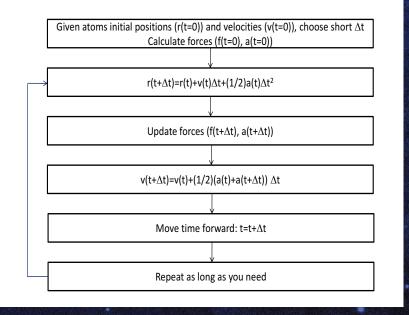


ROAD NETWORKS

DTA WORKFLOW

► Iterative

- Graph Based
- Like Big Data problems
 - PageRank
 - Queries on GraphDBs
 - Network Community Detection


Critical importance societally

APPLICATIONS (2)

- ► LAMMPS
 - Molecular Dynamics framework (C/C++)
- Simulates interactions between particles in a closed space
- Initial conditions
 - Velocity
 - ► Force fields
- Other parameters
 - Box dimensions
 - Number of particles
 - ► Time simulated

LAMMPS WORKFLOW

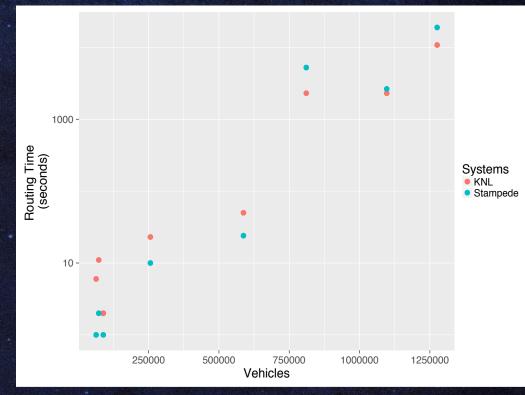
- ► Iterative
- System evolves based on Newtons Second Law
- Initial conditions can be set
 - Number of particles/ atoms/molecules
 - ► Forces
- Simulation Time

SVM

- Support Vector Machines
- Supervised Learning : Learns from labelled data
- Widely used classification technique in Machine Learning
- Finds the maximum margin hyperplane separating 2 groups of points
- ► We use R's implementation from library(e1071)

SVM

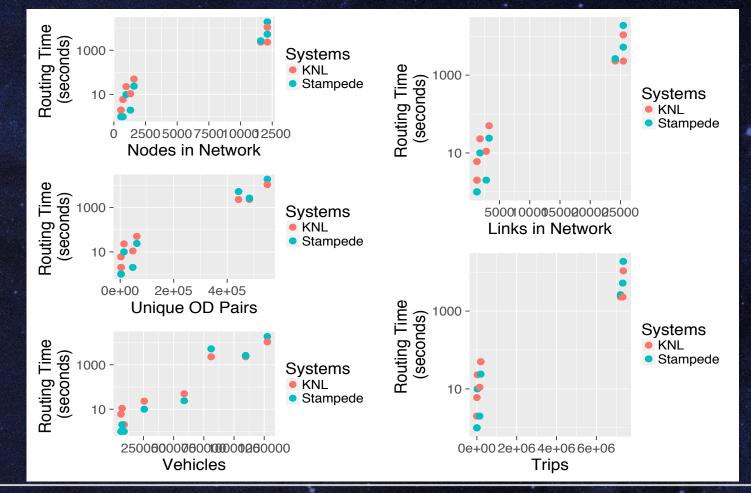
- Different Kernels employed to measure similarity between 2 samples
- ► We empirically explore
 - ► Linear
 - ► Polynomial
 - Radial basis
 - ► Sigmoid



FEATURE SELECTION : DTA

- We select the following (7) problem features to the SVM model
- Hardware : Processing Power
 - (Total Number of Hardware Threads across all nodes) X (Speed of one core)
- Hardware : Memory
 - ► (Total memory across all nodes)

- Problem Size : Graph Topology
 - Nodes
 - Links
- Problem Size : Computation Size
 - Number of Unique Origin-Destination pairs
- Problem Size : Simulation Dynamics
 - Number of Vehicles in simulation
- Problem Size : Simulation Dynamics
 - Number of Trips in simulation


DTA SCALING

 Shown here is for illustration Scaling with the Vehicles feature

- Tested across 8 real world transportation networks
 - (*Included in the paper*)

 Neither system uniformly better for all data sets

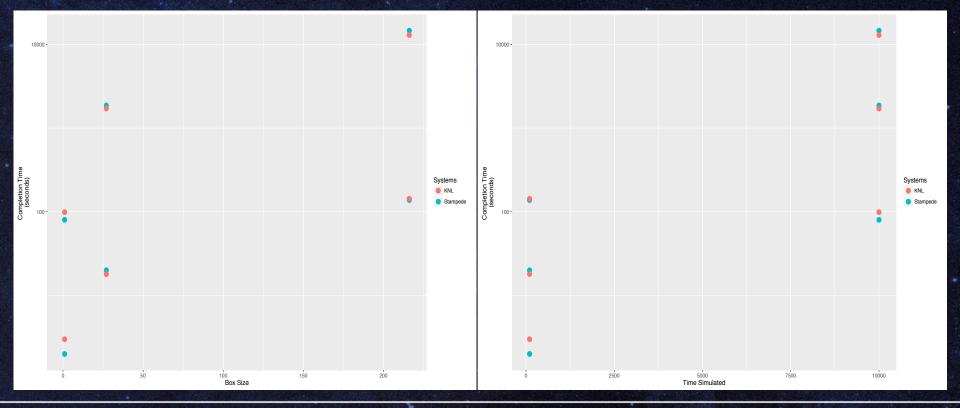
DTA: SVM PREDICTION RESULTS

SVM Kernel	70% (Training) – 30% (Testing)	80% (Training) – 20% (Testing)
Linear	93.56	93.01
Polynomial	95.19	92.74
Radial Basis	95.49	96.17
Sigmoid	94.90	95.39

- Labelled dataset 21 points
- ▶ 5 labelled for KNL
- ► 16 labelled for Stampede
- ► 1000 fold cross-validation

LAMMPS FEATURES

 We select the following (4) problem features to the SVM model


Hardware : Processing Power

- (Total Number of Hardware Threads across all nodes) X (Speed of one core)
- ► Hardware : Memory
 - ► (Total memory across all nodes)

- Problem Size : Box Size
- Problem Size : Time Simulated

LAMMPS SCALING

LAMPS : SVM PREDICTION RESULTS

SVM Kernel	70% (Training) – 30% (Testing)	80% (Training) – 20% (Testing)
Linear	71.01	73.975
Polynomial	71.68	78.95
Radial Basis	76.35	80.525
Sigmoid	73.25	77.6

- Labelled dataset 24 points
- ▶ 15 labelled for KNL
- ▶ 9 labelled for Stampede
- ► 1000 fold cross-validation

CONCLUSION

Two very different application workloads

- VISTA (Transportation Simulation, Graph Processing)
- LAMMPS (Molecular Dynamics Simulation)
- Observed accuracy is promising
 - Datasets presented are small (20-30 samples in labelled data)
- Model would be more accurate with larger historical data
- Can optimize both System Utilization and End User Analysis time

FUTURE WORKS

- Test methodology on larger datasets
- Test methodology across different application/workload types
 - Hadoop/Spark based workloads
- Include more hardware features to do better prediction
 - Network Bandwidth
 - ► L2/L3 caches
 - Memory Bandwidth
- Use this within an application specific portal

THANKS

- Computations run on the NSF funded STAMPEDE cluster at
 - Texas Advanced Computing Center
- Partially funded by XSEDE
- Simulation framework and Datasets provided by
 - ► Center for Transportation Research, UT Austin

Questions?

