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Introduction

Data analytics has 

 Increased importance for businesses 

Growing dataset

Design goals: 

ProgrammabilityPerformance
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Map-Reduce Programming Model

Delivers programmability and performance for distributed 
memory systems
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Moore’s law continues..

 Shared-memory machines with higher core count 
and terabytes of memory now feasible for data 
analytics
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CilkMR

A C++ template-based library to provide map-reduce 
functionality for shared memory systems

 aims to provide programmability and performance

 built on top of Cilk, a task-parallel programming model 
with work-stealing based scheduler

 expression of map (task) and reduce operations derived 
from Cilk
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CilkMR

Cilk provides simple keywords to express parallelism

 cilk_for, cilk_spawn and cilk_sync
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for(int i=0; i<n;i++)
a[i]= b[i]+c[i]

cilk_for(int i=0; i<n;i++)
a[i]= b[i]+c[i]

sequential parallel

int fib(int n){
if(n<2) reurn n;
else{

int op=0;
op+=fib(n-1);
op+=fib(n-2);
return op; }

}

int fib(int n){
if(n<2) reurn n;
else{

int op=0;
op+=cilk_spawn fib(n-1);
op+=cilk_spawn fib(n-2);
cilk_sync;
return op; }

}



CilkMR- mapreduce API

Templates for balanced and unbalanced spawn trees

unbalanced
• cilk_spawn, 

cilk_sync

• choose when 
iteration range 
not known

• more work-
stealing

• O(n) steals

balanced
• cilk_for

• choose when 
iteration range 
known

• work-stealing 
minimum

• O(logn) steals
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CilkMR- mapreduce API

CilkMR template for balanced spawn tree

1 template<class Monoid, class InputIterator, class MapFunctor>

2 map_reduce(InputIterator ibegin, InputIterator iend, MapFunctor

mapfn, typename Monoid::value type & output ) {

3 cilk::reducer<Monoid> imp_;

4 cilk_for(InputIterator I=ibegin, E=iend; I != E; ++I )

5       mapfn(*I, imp_.view());

6 std::swap( output, imp_.view());

}
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histo_map(){

histogram[pix[0]]++;

histogram[256+pix[1]]++;

histogram[512+pix[2]]++;

}

map_reduce(img_array, img_array_length/3, histo_map(), result);

Example use-case: histogram



CilkMR - Reducers

Reduction defined through monoid (T, x, e) where T is type, x is reduction 
operation and e is identity

hyper-objects: the view may not be the same for each observer

 avoids reductions unless necessary. new views created only after a 
steal

 reduction operations (and overall cost) α number of steals  

 binary reduction operations required to hold associative property.

 operate independently of the control structure. managed only at 
spawn and sync’s.
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Programming Style

CilkMR:

+ does not require fitting the problem in map-reduce model.

+ Follows the structure of general purpose code

Specialized map-reduce frameworks (such as Phoenix++) 

- Requires effort to fit the problem in map-reduce model

- inefficient for iterative algorithms such as Kmeans

- Long and tedious codes for defining mechanics of 
computation, such as for pca

Lines of code for covariance calculation for 
PCA: 18 for CilkMR, 50 for Phoenix++ 
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Choice of intermediate data 
structures

CilkMR

+ allows arbitrary intermediate data structures 

+ appropriate data structures can be chosen for a given 
problem. 

Specialized map-reduce frameworks (such as 
Phoenix++) 

- require representation of intermediate data structures 
as key-value pairs

- costs performance for restructuring/sorting of keys.
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Reduction operations

CilkMR

 generalized reduction operations on data containers

 overlap of map and reduce phases. Better load-balancing 

Specialized map-reduce frameworks (such as Phoenix++) 

- reductions over key-value pairs. 

- reduction phase starts only after the completion of  map 
phase
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Memory Consumption

CilkMR

 Cilk runtime does not delay all reductions , and thus avoids 
large excessive memory usage for storing unreduced views

Specialized map-reduce frameworks (such as Phoenix++) 

- delayed reductions require storing large volumes of 
intermediate data structures

15



Additional feature support

 CilkMR allows use of additional features supported by Cilk
such as nested parallelism and vectorization.
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Performance Evaluation

Benchmarks

 7 map-reduce benchmarks from Phoenix++

Platform

 Quad-socket 12(x2)-core Intel Xeon E7-4860-v2@2.6GHz

 No hyper-threading used

 30MB L3 cache / 12 physical cores

 CentOS 6.5, ICC compiler v14.0.1

 Comparison to Phoenix++ 1.0, specialized shared-memory 
map-reduce system
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Performance Evaluation

kmeans: Unsupervised clustering algorithm: iteratively groups 
input data points into K clusters, based on the nearest mean

 CilkMR: balanced template

 Each iteration in Phoenix++ is a 

map-reduce algorithm 

 Repeated (de)-serialization of

the key-value pairs 
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CilkMR 2.2x 
faster!



Performance Evaluation

pca: row mean and covariance matrix calculation for Principal 
Component Analysis

 CilkMR: implemented as

general-purpose parallel code

 Covariance calculation code with

nested for-loop 

 Load-imbalance in the inner loop
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CilkMR 1.9x 
faster!



Performance Evaluation

wordcount: Counting occurrence of different words in a file 

 CilkMR: unbalanced template
 Reduce phase : reduction on hash

table
 Unbalanced spawn tree
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CilkMR 0.8x 
slower!



Performance Evaluation
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Speedup on 48 Threads (normalized to sequential 
execution)

Phoenix++

CilkMR

46% 
faster

4% 
faster

89.9% 
faster

83.5% faster

113.6% 
faster

22% 
slower

22% 
slower



Memory Consumption

 Memory Consumption
Memory usage (MB) for thread count

1 16 32 48

histogram
CilkMR 0.06 0.95 1.67 2.50

Phoenix++ 0.04 0.43 0.86 1.23

lreg
CilkMR 0.06 0.69 1.39 2.08

Phoenix++ <0.01 0.06 0.11 0.17

wc
CilkMR 11.7 28.10 34.30 34.0

Phoenix++ 15.1 60.60 98.30 117.0

pca
CilkMR 25.82 26.44 27.13 27.82

Phoenix++ 159.90 161.5 160.0 160.10

kmeans
CilkMR 39.81 41.66 42.98 44.55

Phoenix++ 68.62 502.00 963.2 1423.4

strmatch
CilkMR 0.06 0.69 1.38 2.07

Phoenix++ 0.56 0.58 0.61 0.73

matmul
CilkMR 4.06 4.69 5.39 5.35

Phoenix++ 4.06 4.16 4.27 4.3923
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Conclusion

 CilkMR outperforms Phoenix++ for 5 out of 7 benchmarks.

 Forcing applications into map-reduce model has its 
inefficiencies

 CilkMR composable with general purpose code

 Intuitive selection of containers, intermediate data structures 
and program structure.

 Reductions over containers instead of key-value pairs
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Thank You

Questions?
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