CilkMR: A Scalable and @
Composable Map-Reduce

System

M. Arif, H. Vandierendonck, D.S. Nikolopoulos, B. R. de. Supinski

Queen's Universit y
elfast

+ Introduction and Background

4+ Contribution
<+ Evaluation

4+ Conclusion

Introduction

Data analytics has
+ Increased importance for businesses
+ Growing dataset

Design goals:

Performance

Map-Reduce Programming Model

Delivers programmability and performance for distributed
memory systems

Intermediate pairs

ilp

<ikeys, |va|1>
© <keyz,val1> w%<lkeyz IV&lID%

<ikeys, ival3>

<ikeys,ivalg>
<key2 val2> @ |key56 ivalg
<key249,val249> w <|key2 |vaI 60>

~

split

4 Figure source: http://webmapreduce.sourceforge.net

Moore’s law continues..

+ Shared-memory machines with higher core count
and terabytes of memory now feasible for data
analytics

ERRUESRAEARATE AR

00,000,000

RIERE RN R

1,000,000

Transistars

<+ Contribution

4

==

CilkMR

A C++ template-based library to provide map-reduce
functionality for shared memory systems

 aims to provide programmability and performance

- built on top of Cilk, a task-parallel programming model
with work-stealing based scheduler

] expression of map (task) and reduce operations derived
from Cilk

CilkMR

Cilk provides simple keywords to express parallelism

= cilk for,cilk spawnandcilk sync

sequential parallel
[for(int i=0; i<n;i++)

cilk_for(int i=0; i<n;i++)

alil= bil+c[i] } — [a[il= bli]+c[i]
G’C fibint mj \ int fib(int n){

) if(n<2) reurn n;
if(n<2) reurn n; (n<2) !

elsef 2
. int op=0;
int op=0;

N op+=cilk_spawn fib(n-1);
op+-f!b(n 1); op+=cilk_spawn fib(n-2);
op+=fib(n-2);

cilk_sync;
return op; } —>YNe;

return op; }
\ \L

8

CilkMR- mapreduce API

Templates for balanced and unbalanced spawn trees

balanced unbalanced

* cilk for * cilk spawn,

« choose when cilk sync
iteration range choose when
known iteration range
work-stealing not known
minimum more work-

stealing

O(logn) steals O(n) steals

CilkMR- mapreduce API

CilkMR template for balanced spawn tree

1 template<class Monoid, class Inputlterator, class MapFunctor>
2 map_reduce (Inputlterator ibegin, Inputlterator iend, MapFunctor
mapfn, typename Monoid::value type & output) {
cilk: :reducer<Monoid> imp ;

mapfn (*I, imp .view());

3
4 cilk for (InputlIterator I=ibegin, E=iend; I != E; ++1)
5
6 std::swap(output, imp .view());

Example use-case: histogram

histo map () {
histogram[pix[0]]++;
histogram[256+pix[1]]++;
histogram[512+pix[2]]++;

}

map reduce (img array, img array length/3, histo map(), result);
10 o

CilkMR - Reducers

Reduction defined through monoid (T, x, e) where T is type, x is reduction
operation and e is identity

hyper-objects: the view may not be the same for each observer

avoids reductions unless necessary. new views created only after a
steal

reduction operations (and overall cost) a number of steals
binary reduction operations required to hold associative property.

operate independently of the control structure. managed only at

spawn and sync’ s.
Oueen*s University
Balfes:

Programming Style

CilkMR:

+ does not require fitting the problem in map-reduce model.

+ Follows the structure of general purpose code

Specialized map-reduce frameworks (such as Phoenix++)

~ Requires effort to fit the problem in map-reduce model

- inefficient for iterative algorithms such as Kmeans

- Long and tedi

_ Lines of code for covariance calculation for
computation,

PCA: 18 for CilkMR, 50 for Phoenix++

Choice of intermediate data
structures

CilkMR

+ allows arbitrary intermediate data structures

+ appropriate data structures can be chosen for a given

problem.

Specialized map-reduce frameworks (such as
Phoenix++)

~ require representation of intermediate data structures
as key-value pairs

~ costs performance for restructuring/sorting of keys.
o @ aﬁ?:umvmiq

Reduction operations

CilkMR

+ generalized reduction operations on data containers

+ overlap of map and reduce phases. Better load-balancing

Specialized map-reduce frameworks (such as Phoenix++)
- reductions over key-value pairs.

~ reduction phase starts only after the completion of map
phase

Memory Consumption

CilkMR

+ Cilk runtime does not delay all reductions, and thus avoids
large excessive memory usage for storing unreduced views

Specialized map-reduce frameworks (such as Phoenix++)

delayed reductions require storing large volumes of
intermediate data structures

Additional feature support

+ CilkMR allows use of additional features supported by Cilk
such as nested parallelism and vectorization.

<+ Evaluation

==

Performance Evaluation

Benchmarks
7 map-reduce benchmarks from Phoenix++

Platform
= Quad-socket 12(x2)-core Intel Xeon E7-4860-v2@2.6GHz

No hyper-threading used
30MB L3 cache [12 physical cores
CentOS 6.5, ICC compiler vag.o.1

Comparison to Phoenix++ 1.0, specialized shared-memory
map-reduce system

mailto:E7-4860-v2@2.6GHz

Performance Evaluation

kmeans: Unsupervised clustering algorithm: iteratively groups
input data points into K clusters, based on the nearest mean
kmeans

= CilkMR: balanced template 48
40 1 CilkMR 2.2x

= Each iteration in Phoenix++isa o 32 1 faster!

map-reduce algorithm

= Repeated (de)-serialization of

the key-value pairs ”

No. of Threads
—A CilkMR e==Phoenix++

Performance Evaluation

pca: row mean and covariance matrix calculation for Principal

Component Analysis pca
48
= CilkMR: implemented as 4o +—| CilkMR 1.9x

general-purpose parallel code _ 32 faster!

] . 1 % 24
= Covariance calculation code with § ¢

nested for-loop)

= Load-imbalance in the inner loop o 12 24 36

No. of Threads
-O- CilkMR+vector ~A CilkMR
~B Phoenix++,outer loop ===Phoenix++,flattened

Performance Evaluation

wordcount: Counting occurrence of different words in a file

wordcount

= CilkMR: unbalanced template i

= Reduce phase : reduction on hash / pa
table ////

= Unbalanced spawn tree

CilkMR 0.8x
slower!

[[[

12 24 36
No. of Threads

A CilkMR e===Phoenix++

Performance Evaluation

Speedup on 48 Threads (normalized to sequential

execution)
83.5% faster

B Phoenix++
m CilkMR

113.6%
faster

22%
slower
46% 4%

| faster faster

Memory Consumption

Memory usage (MB) for thread count

1 16 32 48
CilkMR 0.06 0.95 1.67 2.50
Phoenix++ 0.04 0.43 0.86 1.23
CilkMR 0.06 0.69 1.39 2.08
Phoenix++ <0.01 0.06 0.11 0.17
CilkMR 11.7 28.10 34.30 34.0
Phoenix++ 15.1 60.60 98.30 117.0
CilkMR 25.82 26.44 27.13 27.82
Phoenix++ 159.90 161.5 160.0 160.10
CilkMR 39.81 41.66 42.98 44.55
68.62 502.00 963.2 1423.4
0.06 0.69 1.38 2.07
0.56 0.58 0.61 0.73
4.06 4.69 5.39 5.35
4.06 4.16 4.27 4.39

histogram

Ireg

pca

kmeans :
Phoenix++

CilkMR

strmatch :
Phoenix++

CilkMR

matmul

Phoenix++

Memory Consumption

Memory usage (MB) for thread count

1 16 32

CilkMR 0.06 0.95 1.67
Phoenix++ 0.04 0.43 0.86
CilkMR 0.06 0.69 1.39
Phoenix++ <0.01 0.06 0.11
CilkMR 11.7 28.10 34.30

histogram

Ireg

CilkMR 25.82 26.44 27.13
pca

CilkMR 39.81 41.66 42.98
kmeans

CilkMR

strmatch :
Phoenix++

CilkMR

matmul

Phoenix++

4+ Conclusion

Conclusion

CilkMR outperforms Phoenix++ for 5 out of 7 benchmarks.

Forcing applications into map-reduce model has its
inefficiencies

CilkMR composable with general purpose code

Intuitive selection of containers, intermediate data structures
and program structure.

Reductions over containers instead of key-value pairs

ThankYou

Questions?

