
CilkMR: A Scalable and
Composable Map-Reduce
System

M. Arif, H. Vandierendonck, D.S. Nikolopoulos, B. R. de. Supinski

Agenda

 Introduction and Background

 Contribution

 Evaluation

 Conclusion

1

Agenda

 Introduction and Background

 Contribution

 Evaluation

 Conclusion

2

Introduction

Data analytics has

 Increased importance for businesses

Growing dataset

Design goals:

ProgrammabilityPerformance

3

Map-Reduce Programming Model

Delivers programmability and performance for distributed
memory systems

4

map

map

map

map

  

<key1,val1>

<key2,val2>

<key250,val250>

<key249,val249>

  

<ikey1,ival1>
<ikey2,ival2>
<ikey1, ival3>

<ikey1,ival4>
<ikey56, ival5>

<ikey2,ival660>
<ikey56,ival661>

  

<ikey2,ival662>

Figure source: http://webmapreduce.sourceforge.net

i/p

<okey1,oval1>

<okey2,oval2>

<okey20,oval20>

  

o/pIntermediate pairs

mapsplit

reduce

reduce

reduce

  

reducesort

Moore’s law continues..

 Shared-memory machines with higher core count
and terabytes of memory now feasible for data
analytics

5

Agenda

 Introduction and Background

 Contribution

 Evaluation

 Conclusion

6

CilkMR

A C++ template-based library to provide map-reduce
functionality for shared memory systems

 aims to provide programmability and performance

 built on top of Cilk, a task-parallel programming model
with work-stealing based scheduler

 expression of map (task) and reduce operations derived
from Cilk

7

CilkMR

Cilk provides simple keywords to express parallelism

 cilk_for, cilk_spawn and cilk_sync

8

for(int i=0; i<n;i++)
a[i]= b[i]+c[i]

cilk_for(int i=0; i<n;i++)
a[i]= b[i]+c[i]

sequential parallel

int fib(int n){
if(n<2) reurn n;
else{

int op=0;
op+=fib(n-1);
op+=fib(n-2);
return op; }

}

int fib(int n){
if(n<2) reurn n;
else{

int op=0;
op+=cilk_spawn fib(n-1);
op+=cilk_spawn fib(n-2);
cilk_sync;
return op; }

}

CilkMR- mapreduce API

Templates for balanced and unbalanced spawn trees

unbalanced
• cilk_spawn,

cilk_sync

• choose when
iteration range
not known

• more work-
stealing

• O(n) steals

balanced
• cilk_for

• choose when
iteration range
known

• work-stealing
minimum

• O(logn) steals

9

CilkMR- mapreduce API

CilkMR template for balanced spawn tree

1 template<class Monoid, class InputIterator, class MapFunctor>

2 map_reduce(InputIterator ibegin, InputIterator iend, MapFunctor

mapfn, typename Monoid::value type & output) {

3 cilk::reducer<Monoid> imp_;

4 cilk_for(InputIterator I=ibegin, E=iend; I != E; ++I)

5 mapfn(*I, imp_.view());

6 std::swap(output, imp_.view());

}

10

histo_map(){

histogram[pix[0]]++;

histogram[256+pix[1]]++;

histogram[512+pix[2]]++;

}

map_reduce(img_array, img_array_length/3, histo_map(), result);

Example use-case: histogram

CilkMR - Reducers

Reduction defined through monoid (T, x, e) where T is type, x is reduction
operation and e is identity

hyper-objects: the view may not be the same for each observer

 avoids reductions unless necessary. new views created only after a
steal

 reduction operations (and overall cost) α number of steals

 binary reduction operations required to hold associative property.

 operate independently of the control structure. managed only at
spawn and sync’s.

11

Programming Style

CilkMR:

+ does not require fitting the problem in map-reduce model.

+ Follows the structure of general purpose code

Specialized map-reduce frameworks (such as Phoenix++)

- Requires effort to fit the problem in map-reduce model

- inefficient for iterative algorithms such as Kmeans

- Long and tedious codes for defining mechanics of
computation, such as for pca

Lines of code for covariance calculation for
PCA: 18 for CilkMR, 50 for Phoenix++

12

Choice of intermediate data
structures

CilkMR

+ allows arbitrary intermediate data structures

+ appropriate data structures can be chosen for a given
problem.

Specialized map-reduce frameworks (such as
Phoenix++)

- require representation of intermediate data structures
as key-value pairs

- costs performance for restructuring/sorting of keys.

13

Reduction operations

CilkMR

 generalized reduction operations on data containers

 overlap of map and reduce phases. Better load-balancing

Specialized map-reduce frameworks (such as Phoenix++)

- reductions over key-value pairs.

- reduction phase starts only after the completion of map
phase

14

Memory Consumption

CilkMR

 Cilk runtime does not delay all reductions , and thus avoids
large excessive memory usage for storing unreduced views

Specialized map-reduce frameworks (such as Phoenix++)

- delayed reductions require storing large volumes of
intermediate data structures

15

Additional feature support

 CilkMR allows use of additional features supported by Cilk
such as nested parallelism and vectorization.

16

Agenda

 Introduction and Background

 Contribution

 Evaluation

 Conclusion

17

Performance Evaluation

Benchmarks

 7 map-reduce benchmarks from Phoenix++

Platform

 Quad-socket 12(x2)-core Intel Xeon E7-4860-v2@2.6GHz

 No hyper-threading used

 30MB L3 cache / 12 physical cores

 CentOS 6.5, ICC compiler v14.0.1

 Comparison to Phoenix++ 1.0, specialized shared-memory
map-reduce system

18

mailto:E7-4860-v2@2.6GHz

Performance Evaluation

kmeans: Unsupervised clustering algorithm: iteratively groups
input data points into K clusters, based on the nearest mean

 CilkMR: balanced template

 Each iteration in Phoenix++ is a

map-reduce algorithm

 Repeated (de)-serialization of

the key-value pairs
0

8

16

24

32

40

48

0 12 24 36 48
S

p
e

e
d

u
p

No. of Threads

kmeans

CilkMR Phoenix++

19

CilkMR 2.2x
faster!

Performance Evaluation

pca: row mean and covariance matrix calculation for Principal
Component Analysis

 CilkMR: implemented as

general-purpose parallel code

 Covariance calculation code with

nested for-loop

 Load-imbalance in the inner loop
0

8

16

24

32

40

48

0 12 24 36 48
S

p
e

e
d

u
p

No. of Threads

pca

CilkMR+vector CilkMR

Phoenix++,outer loop Phoenix++,flattened

20

CilkMR 1.9x
faster!

Performance Evaluation

wordcount: Counting occurrence of different words in a file

 CilkMR: unbalanced template
 Reduce phase : reduction on hash

table
 Unbalanced spawn tree

0

2

4

6

8

10

12

14

0 12 24 36 48
S

p
e

e
d

u
p

No. of Threads

wordcount

CilkMR Phoenix++

21

CilkMR 0.8x
slower!

Performance Evaluation

22

0

10

20

30

40

50

60

70

S
p

e
e

d
u

p

Speedup on 48 Threads (normalized to sequential
execution)

Phoenix++

CilkMR

46%
faster

4%
faster

89.9%
faster

83.5% faster

113.6%
faster

22%
slower

22%
slower

Memory Consumption

 Memory Consumption
Memory usage (MB) for thread count

1 16 32 48

histogram
CilkMR 0.06 0.95 1.67 2.50

Phoenix++ 0.04 0.43 0.86 1.23

lreg
CilkMR 0.06 0.69 1.39 2.08

Phoenix++ <0.01 0.06 0.11 0.17

wc
CilkMR 11.7 28.10 34.30 34.0

Phoenix++ 15.1 60.60 98.30 117.0

pca
CilkMR 25.82 26.44 27.13 27.82

Phoenix++ 159.90 161.5 160.0 160.10

kmeans
CilkMR 39.81 41.66 42.98 44.55

Phoenix++ 68.62 502.00 963.2 1423.4

strmatch
CilkMR 0.06 0.69 1.38 2.07

Phoenix++ 0.56 0.58 0.61 0.73

matmul
CilkMR 4.06 4.69 5.39 5.35

Phoenix++ 4.06 4.16 4.27 4.3923

Memory Consumption

 Memory Consumption
Memory usage (MB) for thread count

1 16 32 48

histogram
CilkMR 0.06 0.95 1.67 2.50

Phoenix++ 0.04 0.43 0.86 1.23

lreg
CilkMR 0.06 0.69 1.39 2.08

Phoenix++ <0.01 0.06 0.11 0.17

wc
CilkMR 11.7 28.10 34.30 34.0

Phoenix++ 15.1 60.60 98.30 117.0

pca
CilkMR 25.82 26.44 27.13 27.82

Phoenix++ 159.90 161.5 160.0 160.10

kmeans
CilkMR 39.81 41.66 42.98 44.55

Phoenix++ 68.62 502.00 963.2 1423.4

strmatch
CilkMR 0.06 0.69 1.38 2.07

Phoenix++ 0.56 0.58 0.61 0.73

matmul
CilkMR 4.06 4.69 5.39 5.35

Phoenix++ 4.06 4.16 4.27 4.3924

Agenda

 Introduction and Background

 Contribution

 Evaluation

 Conclusion

25

Conclusion

 CilkMR outperforms Phoenix++ for 5 out of 7 benchmarks.

 Forcing applications into map-reduce model has its
inefficiencies

 CilkMR composable with general purpose code

 Intuitive selection of containers, intermediate data structures
and program structure.

 Reductions over containers instead of key-value pairs

26

Thank You

Questions?

27

