
CilkMR: A Scalable and
Composable Map-Reduce
System

M. Arif, H. Vandierendonck, D.S. Nikolopoulos, B. R. de. Supinski

Agenda

 Introduction and Background

 Contribution

 Evaluation

 Conclusion

1

Agenda

 Introduction and Background

 Contribution

 Evaluation

 Conclusion

2

Introduction

Data analytics has

 Increased importance for businesses

Growing dataset

Design goals:

ProgrammabilityPerformance

3

Map-Reduce Programming Model

Delivers programmability and performance for distributed
memory systems

4

map

map

map

map

<key1,val1>

<key2,val2>

<key250,val250>

<key249,val249>

<ikey1,ival1>
<ikey2,ival2>
<ikey1, ival3>

<ikey1,ival4>
<ikey56, ival5>

<ikey2,ival660>
<ikey56,ival661>

<ikey2,ival662>

Figure source: http://webmapreduce.sourceforge.net

i/p

<okey1,oval1>

<okey2,oval2>

<okey20,oval20>

o/pIntermediate pairs

mapsplit

reduce

reduce

reduce

reducesort

Moore’s law continues..

 Shared-memory machines with higher core count
and terabytes of memory now feasible for data
analytics

5

Agenda

 Introduction and Background

 Contribution

 Evaluation

 Conclusion

6

CilkMR

A C++ template-based library to provide map-reduce
functionality for shared memory systems

 aims to provide programmability and performance

 built on top of Cilk, a task-parallel programming model
with work-stealing based scheduler

 expression of map (task) and reduce operations derived
from Cilk

7

CilkMR

Cilk provides simple keywords to express parallelism

 cilk_for, cilk_spawn and cilk_sync

8

for(int i=0; i<n;i++)
a[i]= b[i]+c[i]

cilk_for(int i=0; i<n;i++)
a[i]= b[i]+c[i]

sequential parallel

int fib(int n){
if(n<2) reurn n;
else{

int op=0;
op+=fib(n-1);
op+=fib(n-2);
return op; }

}

int fib(int n){
if(n<2) reurn n;
else{

int op=0;
op+=cilk_spawn fib(n-1);
op+=cilk_spawn fib(n-2);
cilk_sync;
return op; }

}

CilkMR- mapreduce API

Templates for balanced and unbalanced spawn trees

unbalanced
• cilk_spawn,

cilk_sync

• choose when
iteration range
not known

• more work-
stealing

• O(n) steals

balanced
• cilk_for

• choose when
iteration range
known

• work-stealing
minimum

• O(logn) steals

9

CilkMR- mapreduce API

CilkMR template for balanced spawn tree

1 template<class Monoid, class InputIterator, class MapFunctor>

2 map_reduce(InputIterator ibegin, InputIterator iend, MapFunctor

mapfn, typename Monoid::value type & output) {

3 cilk::reducer<Monoid> imp_;

4 cilk_for(InputIterator I=ibegin, E=iend; I != E; ++I)

5 mapfn(*I, imp_.view());

6 std::swap(output, imp_.view());

}

10

histo_map(){

histogram[pix[0]]++;

histogram[256+pix[1]]++;

histogram[512+pix[2]]++;

}

map_reduce(img_array, img_array_length/3, histo_map(), result);

Example use-case: histogram

CilkMR - Reducers

Reduction defined through monoid (T, x, e) where T is type, x is reduction
operation and e is identity

hyper-objects: the view may not be the same for each observer

 avoids reductions unless necessary. new views created only after a
steal

 reduction operations (and overall cost) α number of steals

 binary reduction operations required to hold associative property.

 operate independently of the control structure. managed only at
spawn and sync’s.

11

Programming Style

CilkMR:

+ does not require fitting the problem in map-reduce model.

+ Follows the structure of general purpose code

Specialized map-reduce frameworks (such as Phoenix++)

- Requires effort to fit the problem in map-reduce model

- inefficient for iterative algorithms such as Kmeans

- Long and tedious codes for defining mechanics of
computation, such as for pca

Lines of code for covariance calculation for
PCA: 18 for CilkMR, 50 for Phoenix++

12

Choice of intermediate data
structures

CilkMR

+ allows arbitrary intermediate data structures

+ appropriate data structures can be chosen for a given
problem.

Specialized map-reduce frameworks (such as
Phoenix++)

- require representation of intermediate data structures
as key-value pairs

- costs performance for restructuring/sorting of keys.

13

Reduction operations

CilkMR

 generalized reduction operations on data containers

 overlap of map and reduce phases. Better load-balancing

Specialized map-reduce frameworks (such as Phoenix++)

- reductions over key-value pairs.

- reduction phase starts only after the completion of map
phase

14

Memory Consumption

CilkMR

 Cilk runtime does not delay all reductions , and thus avoids
large excessive memory usage for storing unreduced views

Specialized map-reduce frameworks (such as Phoenix++)

- delayed reductions require storing large volumes of
intermediate data structures

15

Additional feature support

 CilkMR allows use of additional features supported by Cilk
such as nested parallelism and vectorization.

16

Agenda

 Introduction and Background

 Contribution

 Evaluation

 Conclusion

17

Performance Evaluation

Benchmarks

 7 map-reduce benchmarks from Phoenix++

Platform

 Quad-socket 12(x2)-core Intel Xeon E7-4860-v2@2.6GHz

 No hyper-threading used

 30MB L3 cache / 12 physical cores

 CentOS 6.5, ICC compiler v14.0.1

 Comparison to Phoenix++ 1.0, specialized shared-memory
map-reduce system

18

mailto:E7-4860-v2@2.6GHz

Performance Evaluation

kmeans: Unsupervised clustering algorithm: iteratively groups
input data points into K clusters, based on the nearest mean

 CilkMR: balanced template

 Each iteration in Phoenix++ is a

map-reduce algorithm

 Repeated (de)-serialization of

the key-value pairs
0

8

16

24

32

40

48

0 12 24 36 48
S

p
e

e
d

u
p

No. of Threads

kmeans

CilkMR Phoenix++

19

CilkMR 2.2x
faster!

Performance Evaluation

pca: row mean and covariance matrix calculation for Principal
Component Analysis

 CilkMR: implemented as

general-purpose parallel code

 Covariance calculation code with

nested for-loop

 Load-imbalance in the inner loop
0

8

16

24

32

40

48

0 12 24 36 48
S

p
e

e
d

u
p

No. of Threads

pca

CilkMR+vector CilkMR

Phoenix++,outer loop Phoenix++,flattened

20

CilkMR 1.9x
faster!

Performance Evaluation

wordcount: Counting occurrence of different words in a file

 CilkMR: unbalanced template
 Reduce phase : reduction on hash

table
 Unbalanced spawn tree

0

2

4

6

8

10

12

14

0 12 24 36 48
S

p
e

e
d

u
p

No. of Threads

wordcount

CilkMR Phoenix++

21

CilkMR 0.8x
slower!

Performance Evaluation

22

0

10

20

30

40

50

60

70

S
p

e
e

d
u

p

Speedup on 48 Threads (normalized to sequential
execution)

Phoenix++

CilkMR

46%
faster

4%
faster

89.9%
faster

83.5% faster

113.6%
faster

22%
slower

22%
slower

Memory Consumption

 Memory Consumption
Memory usage (MB) for thread count

1 16 32 48

histogram
CilkMR 0.06 0.95 1.67 2.50

Phoenix++ 0.04 0.43 0.86 1.23

lreg
CilkMR 0.06 0.69 1.39 2.08

Phoenix++ <0.01 0.06 0.11 0.17

wc
CilkMR 11.7 28.10 34.30 34.0

Phoenix++ 15.1 60.60 98.30 117.0

pca
CilkMR 25.82 26.44 27.13 27.82

Phoenix++ 159.90 161.5 160.0 160.10

kmeans
CilkMR 39.81 41.66 42.98 44.55

Phoenix++ 68.62 502.00 963.2 1423.4

strmatch
CilkMR 0.06 0.69 1.38 2.07

Phoenix++ 0.56 0.58 0.61 0.73

matmul
CilkMR 4.06 4.69 5.39 5.35

Phoenix++ 4.06 4.16 4.27 4.3923

Memory Consumption

 Memory Consumption
Memory usage (MB) for thread count

1 16 32 48

histogram
CilkMR 0.06 0.95 1.67 2.50

Phoenix++ 0.04 0.43 0.86 1.23

lreg
CilkMR 0.06 0.69 1.39 2.08

Phoenix++ <0.01 0.06 0.11 0.17

wc
CilkMR 11.7 28.10 34.30 34.0

Phoenix++ 15.1 60.60 98.30 117.0

pca
CilkMR 25.82 26.44 27.13 27.82

Phoenix++ 159.90 161.5 160.0 160.10

kmeans
CilkMR 39.81 41.66 42.98 44.55

Phoenix++ 68.62 502.00 963.2 1423.4

strmatch
CilkMR 0.06 0.69 1.38 2.07

Phoenix++ 0.56 0.58 0.61 0.73

matmul
CilkMR 4.06 4.69 5.39 5.35

Phoenix++ 4.06 4.16 4.27 4.3924

Agenda

 Introduction and Background

 Contribution

 Evaluation

 Conclusion

25

Conclusion

 CilkMR outperforms Phoenix++ for 5 out of 7 benchmarks.

 Forcing applications into map-reduce model has its
inefficiencies

 CilkMR composable with general purpose code

 Intuitive selection of containers, intermediate data structures
and program structure.

 Reductions over containers instead of key-value pairs

26

Thank You

Questions?

27

