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Introduction



The Traditional Role for HPC

• For many scientific domains, simulation traditionally provides
the foundation for scientific discovery.

• Popular simulation applications favor traditional HPC
architectures that prioritize computational capacity.

• What are the implications of these architecture choices on
data-driven science?
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Where does HPC fit into Data-Driven Science?

• Data-driven science has been thrust into the forefront with an
explosion of data from atypical sources such as sensors and
social media.

• Data analytics is a multi-faceted problem, encompassing the
compute, memory, storage and network layers of an architecture
simultaneously.

• These types of jobs are typically left to run on cloud-computing
services such as AWS, or CADES, ORNL’s private cloud.

• Building local analytics clusters require large capital investment
due to the sheer complexity of the hardware needed.
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How do current HPC architectures fare in both
cost and performance for data analytics jobs?
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Methods



OLCF Infrastructure

• We benchmarked a variety of HPC hardware representative of
various computing resources available at scientific institutions.

• Each architecture is connected to a Lustre filesystem and has no
node-level storage.

L2 Cache L3 Cache RAM

Rhea 16 x 256 KB 40 MB DDR3
Rhea (GPU) 26 x 256 KB 8-way set associative caches 70 MB 20-way set associative shared cache DDR4
Titan 8 x 2 MB 16-way set associative shared exclusive caches 2 x 8 MB up to 64-way set associative shared caches DDR3
Eos 16 x 256 KB 8-way set associative caches 40 MB 20-way set associative shared cache DDR3

Table 1: OLCF node level hardware characteristics
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OLCF Computing Resources

Rhea	(non-GPU)
2	x	8-core	2.0	GHz	
Intel	Xeon	E5-2650

128	GB	RAM
No	GPU

4X FDR	Infiniband

Rhea	(GPU)
2	x	14-core	2.3	GHz
Intel	Xeon	E5-2695

1	TB	RAM
2	x	NVIDIA	K80

4X	FDR	Infiniband

Eos
2	x	8-core	2.6	GHz	
Intel	Xeon	E5-2670

64	GB	RAM
No	GPU

Aries	Interconnect

Titan
1	x	16-core	2.2	GHz	
AMD	Opteron	6274

32	GB	RAM
1	x	NVIDIA	K20X

Gemini	Interconnect

Figure 1: OLCF node level hardware 5



Analytics Framework

• pbdR, developed at ORNL, is a collection of R packages which
has focused on bringing parallel R to distributed memory HPC
architectures. The communication is done in MPI and pbdR
contains extensions for distributed matrix operations and
machine learning algorithms.
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Algorithms

• Four common algorithms:
• matrix multiplication
• singular value decomposition
• linear regression
• k-means

• These algorithms represent a wide array of not only matrix
operations but also iterative optimization problems commonly
observed in data science.
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Experimental Design

1. Test each algorithm across Titan, Eos, and both Rhea clusters
2. Benchmark performance of each algorithm on a variety of data
sizes and observing scaling properties

3. Record performance for five processes: Initialization, I/O,
Blockcyclic, Computation and Finalize

4. Derive dollar cost for each architecture
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Deriving Cost

Typically, cost is defined as

TA = FA + VA(t) (1)

Where FA represents the fixed cost of architecture A, which
represents a one-time cost of all of the hardware components of an
architecture. VA(t) is the variable cost of an architecture that
depends on time. Such factors influencing variable cost are
operational (labor) and electrical costs.

Architecture Electrical Cost / hr Operational Cost / hr Total (Variable) Cost / hr Hardware (Fixed) Cost

Rhea (non-GPU) $0.0247 $0.0401 $0.0648 $3,650
Rhea (GPU) $0.0315 $0.0401 $0.0717 $12,600
Titan $0.0268 $0.0401 $0.0669 $1,415
Eos $0.0326 $0.0401 $0.0727 $4,100
Amazon Web Services (On Demand) N/A N/A $3.54 $0.00

Table 2: Node-level hourly costs of OLCF resources
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Cost Comparison
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Figure 2: Cost per hour of OLCF resources vs. AWS (one node) 10



Results



Singular Value Decomposition Scaling Results

0
50

100
150
200
250
300
350
400

10k 20k 30k

T
im

e
 (

s
)

Rhea (non-GPU) Rhea (GPU)

Titan Eos

0

50

100

150

200

250

300

10k 20k 30k
T

im
e
 (

s
)

Rhea (non-GPU) Rhea (GPU)

Titan Eos

0

50

100

150

200

250

300

10k 20k 30k

T
im

e
 (

s
)

Rhea (non-GPU) Titan Eos

Figure 3: Benchmark run times of 1, 2 and 5 node jobs for randomized
singular value decomposition by matrix size (n× n)
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K-means Scaling Results
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Figure 4: Benchmark run times of 1, 2 and 5 node jobs for k-means by
number of observations
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Where are these jobs spending their time?
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Figure 5: Breakdown of run times for a 20, 000× 20, 000 matrix for matrix
multiplication and randomized SVD and 10 million rows for linear regression
and k-means
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Discussion



Performance Comparisons

• Low level cache, memory bandwidth and I/O are all important
considerations from a data analytics perspective.

• Big data jobs are inherently memory intensive – efficient cache
usage and memory bandwidth may provide insights to
performance

14



Low-Level Cache

• Consistent with proposed characteristics of data-analytics
applications, we explore the cache-bound nature of our
architectures.

• We compare two algorithms: a Monte Carlo simulation of Pi (low
cache usage) and a data-science applications, K-means

• We additionally compare these simulation time results across
architectures

Rhea (non-GPU) Rhea (GPU) Titan Eos

Sim. Time (s) 0.929 0.735 0.432 0.471

Table 3: Monte Carlo Pi Simulation Using 10,000 Points
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Low-Level Cache
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Figure 6: Cache Comparisons of Applications on Titan
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Memory Bandwidth Benchmarks

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
em

. B
an

dw
id

th
 (M

B
/s

)

Threads

Rhea (non-GPU) Rhea (GPU)

Titan Eos

Figure 7: OLCF memory bandwidth by thread count 17



Queue Considerations

• HPC systems typically rely on queuing mechanisms for compute
jobs

• For some systems, these times can prohibit on-demand
analytics
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Figure 8: Cumulative distribution function of the percent of job time in
queue (Rhea)
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Cost Analysis

• In order to gain performance, either through increased memory
throughput at the node level, or by scaling out resources to
decrease queue times at the system level, there is an associated
cost

• For example, in the Rhea (GPU) nodes, memory attributes over
40% of total fixed cost.

• Queue policies in HPC facilities introduce significant resource
idling by reserving cores for large and short lived jobs

19



What is a data science workload?

Let us start by considering a ”unit” of analytics as a collection of
analytics jobs and define this unit of analytics as:

• 1,000 matrix multiplications on 20, 000× 20, 000 matrices
• 1,000 singular value decompositions on 30, 000× 30, 000
matrices

• 1,000 linear regressions on 50 million observations
• 1,000 k-means clustering on 50 million observations with 2
features

• Using 2 nodes
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Scaling Performance and Cost
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Figure 9: Relationship between quantity of analytics, cost and performance
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Data Volume and Cost

• The volume of data needs are an important cost consideration
• More data requires more nodes, which drives up fixed and
variable cost

• This is where we see that fixed costs help reduce costs in the
long run

• For example, the Rhea fat-node architecture is cheapest to
process 100TB of data, and AWS is the most expensive
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Limitations

• High variation in variable cost among architectures across
organizations

• Electrical costs especially varies across locales
• No benchmarking or consideration of GPU or interconnect
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Conclusion



Conclusion

• ”Fat” node structures, with large amounts of memory and high
memory bandwidth, are better suited for big data analytics,
delivering up to 3x speedup.

• Due to their flexibility and availability, cloud computing
infrastructures are best suited to small or experimental jobs,
but cost at scale for data analytics favors HPC.

• Furthermore, this cost structure favors fat nodes due to their
ability to fit more data onto one node, which reduces both fixed
and variable cost.

• Further research is needed at a more comprehensive
cost-performance model, as well as quantifying the role of other
hardware in data science, such as a GPU or interconnect.
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Questions?
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