

BUILDING A RESEARCH DATA
SCIENCE PLATFORM FROM
INDUSTRIAL MACHINES

FANG (CHERRY) LIU (PACE)

DUEN HORNG (POLO) CHAU (CSE)

FU SHEN, NEIL BRIGHT, MEHMET

BELGIN CREATING THE NEXT

OUTLINE

- Motivations and Goals
- Challenges
- Existing Hadoop distributions
- Cloud based solutions
- Configuration tools
- Software and hardware configuration
- Validation tests
- Conclusion and ongoing project

MOTIVATIONS AND GOAL

- Free cycles from 200 compute nodes donated by yahoo
- Deep understanding on Hadoop ecosystem from ground-up building experience
- Freedom on trying out up-to-date software to bring more research value in which existing cloud solutions don't provide
- Education platform

Turning industry machines into a high-performance research data science platform based on Hadoop facilitates computing cycle reuse.

CHALLENGES

- Performance: how to get most performance from existing hardware?
- Maintenance: how to make the software upgrades and hardware maintenance minimally intrusive? -> configuration tools and software stack choice
- Sustainability: how to enable horizontal scalability to more compute nodes in future. -> hardware configuration

EXITING HADOOP DISTRIBUTIONS

Hadoop distributions like Hortonworks and Cloudera have drawbacks for a research DSP:

- Vendor code less compatible with configuration tools
- Infrequent update schedules
- Limited library selection in enterprise releases
- Harder to debug proprietary libraries without fee-based consulting

Apache Hadoop gives most freedom as a research software stack as it can be tailored to meet local requirements, reduce the cost, etc.

CLOUD BASED SOLUTION

- Amazon Elastic Compute Cloud (Amazon EC2) requires system administrator knowledge of software installation
- Amazon Elastic MapReduce (Amazon EMR) does not benefit from Hadoop Distributed File System (HDFS) without raising the cost
- Microsoft Azure Data Lake Analytics (DLA) and HDInsight use Hortonworks Hadoop distribution which poses some software limitation
- Google Cloud Datproc (GCD) provides higher I/O operations through SSD, but offers fewer types of machine instances

CLOUD BASED SOLUTION (CONT.)

- Hadoop ecosystem as a black box
- Provides quick start on research, a lot of universities and companies adopt cloud solution
- Education usage with some costs, multiple Georgia Tech courses are using Amazon EMR, EC2 and Microsoft HDInsight for projects

CONFIGURATION TOOLS

- Ansible, Puppet and Chef are software configuration tools widely used:
 - Ansible is the simplest solution, low learning curve, and employs a pushbased masterless approach
 - Chef and Puppet are pull-based approach, but with steeper learning curve without significant programming experience
- The system is configured with Puppet tool (preexisting) for machines's OS and to provision the bare metal.
- Ansible is used to configure all Hadoop related tasks:
 - Propagate the software installations
 - Create needed file folders: /dfs/hadoop, haddoop/pids, hadoop/logs, etc

HARDWARE

- 200 compute nodes donated by Yahoo (in four racks)
 - Runs Red Hat Enterprise Linux 6.7
 - 2x4-core Intel xeon CPUs (2.5GHz)
 - 24GB memory
 - Service nodes use RAID 1 mirroring (2x1TB)
 - DataNodes use separate data and OS disks with 500GB each

SOFTWARE CONFIGURE

- As paper was written, 40 nodes were online
 - 24 nodes run Hadoop (v 2.7.2) and Spark (v 1.6.1)
 - 12 nodes run Hbase (v 1.1.5) and OpenTSDB (2.2.0)
 - Other nodes run as service nodes, such as Ansible server
- As now, there are 40 more nodes are ready to be deployed to existing cluster, the goal is to:
 - 34 nodes for Hadoop cluster
 - 42 nodes for OpenTSDB cluster

VALIDATION AND TESTS

Test data sets

IDs	Size
Ds1	88GB
Ds4	300GB

Test program:

- Wordcount with Ds4 (300GB)
- SparkML Linear Regression on Ds1 (88GB)

VALIDATION AND TESTS (CONT.)

Data size 300GB (Ds4), MapReduce Wordcount

Map.memory.mb	4096	2048	1560	2560
Map.java.optsXmx(MB)	3686	1843	1400	2304
Reduce.memory.mb	5120	2048	2048	2560
Reduce.java.opts Xmx(MB)	4608	1843	1843	2304
Runtime (Hours)	2.18	1.31	1.66	2.11

VALIDATION AND TESTS (CONT.)

Dataset size 88G (Ds1) SparkML Linear Regression

Driver-memory	8G	6G	8G	8G	10G	8G
Executor- memory	4G	4G	4G	8G	8G	4G
Num-executors	8	4	4	8	8	8
Executor-core	4	8	8	4	4	8
Runtime (mins)	27	38	41	49	80	23

ONGOING PROJECT

- The interdisciplinary research involves school of industry engineering and school of computational science and engineering
- research considers a large scale settings that involves thousands of power generating assets, each equipped with hundreds of sensors to monitor its condition and performance.
- Reduce the frequency of false alarms in multi-stream
- Building a scalable analytics architecture with Data ingestion in OpenTSDB cluster, and anomaly detection (FDR) on hadoop/spark cluster

CONCLUSION

- The valuable ground-up building experience could be shared to other institutes:
 - Nontrivial hardware design decisions
 - Configuration tool choices
 - Node integration into existing HPC infrastructure
 - Partitioning resource to meet different application's requirement
- In-depth exiting tools comparison study gives more insights for technology adaptation
- In house big data platform gives more freedom to try out upto-date software and brings more research value in existing cloud solution won't provide